Chaotic response of the 2D semi-geostrophic and 3D quasi-geostrophic equations to gentle periodic forcing

نویسندگان

  • Dorian Goldman
  • Robert J. McCann
چکیده

Symmetries and Hamiltonian structure are combined with Melnikov’s method to show a set of exact solutions to the 2D semi-geostrophic equations in an elliptical tank respond chaotically to gentle periodic forcing of the domain eccentricity (or of the potential vorticity, for that matter) which are sinusoidal in time with nearly any period. A similar approach confirms the chaotic response of the quasi-geostrophic equations to gentle periodic forcing by an external shearing field. Our approach simplifies and strengthens the proof by Bertozzi (upon which it is based) concerning the chaotic response of Kirchoff elliptical vortex patches to gentle shearing in the 2D Euler equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaging Principle for Quasi-geostrophic Motions under Rapidly Oscillating Forcing

In this paper, the averaging principle for quasi-geostrophic motions with rapidly oscillating forcing is proved, both on nite but large time intervals and on the entire time axis. This includes comparison estimate, stability estimate, and convergence result between quasi-geostrophic motions and its averaged motions. Furthermore, the existence of almost periodic quasi-geostrophic motions and att...

متن کامل

Averaging Principle for Quasi - Geostrophic

In this paper, the averaging principle for quasi-geostrophic motions with rapidly oscillating forcing is proved, both on nite but large time intervals and on the entire time axis. This includes comparison estimate, stability estimate, and convergence result between quasi-geostrophic motions and its averaged motions. Furthermore, the existence of almost periodic quasi-geostrophic motions and att...

متن کامل

Chaos in symmetric Hamiltonians applied to some exact solutions of the semi-geostrophic approximation of 2D Incompressible Euler equations

Certain symmetry properties of Hamiltonian systems possessing hyperbolic fixed points with homoclinic and heteroclinic saddle connections are exploited to conclude chaotic dynamics are present under time periodic perturbations. Specifically, the theorems are applied to a set of exact solutions to the semi-geostrophic equations in an elliptical elliptical tank. Introduction We start this paper o...

متن کامل

On the a priori estimates for the Euler, the Navier-Stokes and the quasi-geostrophic equations

We prove new a priori estimates for the 3D Euler, the 3D NavierStokes and the 2D quasi-geostrophic equations by the method of similarity transforms. ∗This research was supported partially by KRF Grant(MOEHRD, Basic Research Promotion Fund); (†) permanent address. AMS 2000 Mathematics Subject Classification: 35Q30, 76B03, 76D05.

متن کامل

Higher Regularity for the Critical and Super-critical Dissipative Quasi-geostrophic Equations

We study the critical and super-critical dissipative quasi-geostrophic equations in R or T. Higher regularity of mild solutions with arbitrary initial data in Ḣ is proved. As a corollary, we obtain a global existence result for the critical 2D quasigeostrophic equations with periodic Ḣ data. Some decay in time estimates are also provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008